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The approximate equations of laminar motion of gas in a plane boundary layer, the 
Prandtl equations, are derived from the Navier-Stokes equations by neglecting second- 

order terms. In estimating terms in the equations it is assumed that the radius of curva- 

ture of the profile of the body in the stream is of the order of its length, and that the 
Reynolds number .J? of the problem satisfies R >j, 1 , More precisely, Prandtl’s equations 
may be regarded as the equations for the leading terms in an asymptotic expansion of 
the solution of the Navier-Stokes equations in a series in powers of E = R-‘:’ as E -+ 0; 

Prandtl’s equations being accurate to within a factor 1 + 0( 8) . The limitation men- 

tioned on the curvaw 1( of th p&k is not eosraa1 in rho asymptotic theory, where 
It need only be bounded for 6+ 0, but is important for application of the equations to 

small but finite 8 . We consider below the case when the radius of curvature of the body 
profile is at some point small in comparison with the length of the body. Here the Prandt 

equations may be too crude for small but finite & , and the solution of the boundary- 

layer problem is regarded as depending upon the two parameters t: and 6, where 6 is the 

minimum radius of curvature of the profile. In the paper an asymptotic theory is devel- 

oped for the laminar motion of gas with E: -) 0 , 6* 0 in the vicinity of points of the 

profile where a sharp change of curvature occurs, in the case when the gas stream outside 

the boundary layer is supersonic. The equations of gas motion are derived with accuracy 

to within a factor 1+ 0( 8 ) for different rates of approach of 6 and 6 to zero. Possible 
means of solving these equations for small but finite & and 6 are discussed. 

1. We consider a profile whose curvature H. is a continuous function of the coordinate 
s measured along the profile (see Fig. 1) from the point 0, where K. attains its greatest 

/ 

~~ 

value It max , and the radius of curvature corre- 

spondingly its minimum value 6 = (?tmax)-l. 

We take the distance from point A to point 0 , 
measured along the profile as the characteristic 

length R, , and will refer all lengths to 4, We 

assume that the profile is such that 

/TA B 

6 ,.L. 

Fig. 1 s 
x ds> 

s 
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--s s-s 
that is, the curvature of the profile in the vicinity of point 0 is much greater than in the 
vicinity of all other points (for which s # 0) . With an eye to subsequent aims, we embed 
the profile under consideration in a family of profiles whose shape depends parametrically 
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upon 6 ; the curvature of the profiles X = )t(S ,6) is taken to be continuous and to 

satisfy the condition SfFJ 

lim 
I 

10, s#O 

L, 6-W xds= \c, s=o (O<c<Z) 
s-6 

(W 

The equation of this family of profiles is not required in what follows, and will not be 

derived. We simply note that the schematic form of the profile in the vicinity of point 

0 can, for 6- 0, be described by a comer rounded off by a circle of radius 6 . It fol- 

lows from condition (1.1) that in the vicinity of point 0, X can be represented by 

x=K(S, 6)6-l, S=sY’, K(S, 6)- +-<. 1 (1.2) 
,lMX 

The function !f(s. 6) has the property 
1 

s 
'K(S,6)ds-w, 640 or Cl <K (S, 6) < 1 for -l<S<l, &-+O 

-1 

2, Now let a uniform stream of viscous perfect gas flow past a body having this pro- 

file. In the system of coordinates used in boundary-layer theory, where s is measured 
along the profile and n normal to it. the Eqs. of continuity, momentum, energy and state 
for a gas have the form 

iP4.g + [(I + xn)pvl, = 0 (2.1) 

P= +PT, v=p(T), 3\.=h(T), B=Jf$E!C (2.5) 

Here U , V are the velocity components in the directions of increasing S and 7?, , 
respectively, p the density, p the pressure, r the temperature, Q the Prandtl number, 
p and i the coefficients of viscosity; y the adiabatic index. R the Reynolds number 
formed from the characteristic parameters of the flow; and derivatives are denoted by 

subscripts. for example. U, = &d/&t. 

In Eqs.(2,1) to (2.5) all lengths are referred to a, , velocities to 4, density to PO , 
pressure to p. V,” , temperature to To = 42C, ‘, where cp is the specific heat of the gas 
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at constant pressure, and coefficients of viscosity to h ; and the notation for the dimen- 

sionless quantities is retained also for dimensional ones. As characteristic parameters 4, 
p. , h , it is convenient in the present case to take the corresponding values of [/ p and 

p in the stream directly ahead of point 0 (see Fig. 1). 

3, As is known, for the solution of the problem of flow past a body in the case C a 1, 
one distiguishes the boundary layer - a region of.thickness 0 (C ) directly adjacent to 

the surface of the body and the “external flow” region. 

In the latter region the solution of the system of Eqs.(2.1) to (2.5) is sought in the 
form of the asymptotic expansion [l] 

f (a, n, 4 - F, (a, n) + aFs (s, 4 + . . . (3.1) 

Here 4 stands for u.V .p, p ,T. In the boundary-layer re ion, where viscous forces are 
of the same order as inertial forces, a new variable fl= nfz 

-8 is introduced, and the solu- 

tion is sought in the form of the asymptotic expansion 

f(s,n,e)~f,(s,N)+efa(s,N)+..., u-eul+eaua+... (3.2) 

where 4 stands for u,p. p ,I’. The equations for the first terms of the expansion (3 1) 
are the Euler equations; the equations for the first terms of the expansion (3.2) are the 
Prandtl equations, which have the form (3.3) 

PIU? -I- kwhv = 0, Pl WlS + WIN) - (PlN)N = - PlS, PlN = 0 

Pl (%h + h&N) - p&l = (tlN/-@)N + pU:Nv p = I-L (tl), J’l = @l(~---l)/?’ 

In the derivation of Eqs.( 3.3) it is assumed that K is a bounded function of s and C. 

In order that Eqs.(3.3), which are correct to within a factor 1 +O( 6 ) , can be used for 
the determination of the gas motion in a boundary layer for small but finite E: , it is 

necessary to impose a more stringent limitation on II. , namely to assume that H. does not 
appreciably exceed unity. 

In this case the asymptotic bounds are evidently reflected in the actual orders of quan- 
tities, and Eqs.(3.3) permit the flow in the boundary layer to be calculated with good 
accuracy up to the vicinity of point 0 (see Fig. 1). where XB 1. Here, although as before 
we have the asymptotic estimate of error 1 t o( 8 ) in the equations for fixed 6 and 

C --) 0, for small but finite C Eqs. (3.3) can become too crude. and it is appropriate to 

regard the problem as depending upon the parameters C and 6. The purpose of the fol- 
lowing is to obtain equations for the motion of the gas in the vicinity of point 0 under 
the conditions that e + 0, 6 -) 0, that are correct to within a factor 1 + 0 ( 6 ) and can be 

used for finite 6 and 6 . It is assumed that the flow outside the boundary layer is super- 

sonic. 
For the construction of an asymptotic theory of gas motion in the vicinity of the point 

0 it is necessary to distinguish the following cases 

lime6-l = 0; lim e&l = PO < 00; lim ea&l = 0, e, 630 

lim e6-l = 00 ; lim eaC1 = pi < 00; lim ea&-1 = 00, e,, 8 -+ 0 

We note that the second case was partially considered in @I. 

4, We consider the case lim 8 6 l= 0 for 6 ., 6 4 0. Since in passing from the point on 
the profile determined by the coordinateS=&-I= - 1 to the point S= + 1 the tangent 
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to the profile rotates through a finite angle (cf. conditions (1.1) and (1.2) ), the inviscid 
flow corresponding to the first term of the expansion (3,l) undergoes a finite change in 

the flow quantities in this segment, in particular of the pressure p . In the boundary layer 

PN = 0 ahead of and behind some neighborhood of point 0 , so that also in a layer of 
thickness o( & ) in the vicinity of point 0 the quantity p = o(l) changes by a finite 
amount; that is 

For the other gas parameters we assume that differentiation with respect to s = s 6-l 

for - 1 es< 1 likewise does not change the order of functions for E -+ 0, 6 -+ 0. The gas 
flow in the boundary.layer ahead of point 0 is a flow with strong shear. Certainly the 

flow has the same character also in the vicinity of point 3. We therefore assume that 

in the vicinity of point i3 , just ahead of it, differentiation of functions with respect to 
W=nP does not change the order of the functions for N = i?(l) and -1 < 3 < 1. We 
transform Eqs.(Z. 1) to (2.4) to the variables s= ~6" and fl = YL~-” . The continuity 
equation (2.1) is written in the form 

(pu)s + [(I + A%iPN) pub&-~ljy = 0 (4.4) 

Since 6c-l -*m as d-$9 and &-+O, L=o(i6-‘1). Weintroduce V*=o(l) by the 
substitution 

v = &6-%” (4.2) 
Eq.(4.1) takes the form 

(pu)s _t [(I + KBiS+v) pv*1&PJ = 0 (4.3) 

Eq. (2.2) in the variables L? and fl , and with consideration of (4,2), is written in the 

x h I ( us + KVWP 

4 + KNe&-’ 

From (4.4) follows Eq. 

K&V* 
+ ‘+‘N +- 1 + KN&-1 &b-l 

The equations of gas motion are being formed with uniform accuracy I+ o(c ) , so that 
in Eqs.(4.3) and (4.5) terms of the form mS 6’ ‘, 6(pU,), must be retained. After 
analogaus transformation, Esq. (2.3) and (2.4) are written as 

~d[(+TN)N+p~~a]+U(e) (4.7) 
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On the surface of the body # = 0, It = D *= 0 (no-slip condition), and Eq.(4.5) redu- 

ces to PS = ~~~~~~~ f Q(a) (4.8) 
The left-hand side of (4,8) contains a finite quantity, and the right-hand side is infini- 

tesimally small for E: * 0 and 6 -) 0, so that near the wall there is a layer where deriva- 

tives of functions with respect to N are of different order than the functions themselves. 
It follows from (4.8) that in this layer it is necessary to introduce the variable 

tj = N&-S = ne-x&!‘, (4 9) 

The continui 
!T 

equation (2.1) shows that U = o(& 6’ a, for ?J = O(l). With the substi- 
tution U = E: 6’ 7J” and transformation to the variables s and ?J , Eqs.(2,1) to (2.4) 

assume the form 
@)a -I- I(4 + xrl@L) pn% =I; 0 (4.10) 

t5, We consider the case LimE 6’ ’ = fi 
of the product sB” 

o <03 for G _ 6-0, We represent 6 in the form 
, where 13 = &I) when e , 6 *O ~ and substitute 6 = G@*’ into Eqs, 

(4.2) to (4.13). 
As a resulr we obtain the equations of gas motion in the form 

(PU)S -I- t(f + -KNP) P@IN = 0, 
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=- 
t 1 + T,‘* + p-&l2 + (~~)~‘~~~ (a--‘T, - 2uu,) + 0 (8) 

(P == (pe)%“, q = ripe” a, s = p,wq 

6. We consider the case lim C2 6’ ’ = 0 but lim 8 6-l= w for 8 , 6-O. The continu- 

ity equation (2.1) is written in the variables S’ and fl in the form 

(PU)s + [(be-i + EN) pulr$ = 0 @*‘l) 

Hence it follows that U = o( 1) for 8 , 6-O . Eq.(2.2), . . , takes the form 

+ VUN + 
Kuv pi 

KN + Se-1 + KN + W’ 
= 0 (e), . , , (6.2) 

In the variables 77 and A’, after the substitution U = 66”*U”, Eqs.(2,1),(2.2), etc. 
take the form 

(PUS + it1 + ~rle~-“*) P% = 0 (6.3) 

Since the problem is to obtain equations of motion with an error bound in the form of 

the factor 1 + o( 8 ) , it is necessary in Eq. (6.4) to retain terms o( &ab’l), since 
lim(8a~“%)=~ fore, 6-a ; that is, it is necessary to solve the full Navier-Stokes 

equations. Eqs. (2.1) to (2.4) can nevertheless be reduced to a system of equations of 

boundary-layer type, but with an error estimate in the form of the factor 1 + O( 6* 6-l). 

7. We consider the case lim 626-1 = fl 
product E: ‘g-’ 

1 <co for 8, 6 -+O . If 6 is represented by the 
, where @ = o( 1) when 6, E -+O , then after substitution of 6 = Ba 8-l 

into Eqs. (6.3),(6.4) and the others it is easy to see that the equations of gas motion are 
the full Navier-Stokes equations; that is, it is not possible to reduce the equations of the 
problem to a parabolic system of equations of boundary-layer type if 6 = 0( Ca) (or still 
higher order). 

8. When specific values of E and 6 are given, it is necessary first to decide with 
which asymptotic case the data are associated, and then how to integrate the boundary- 
layer equations. (Values of C of practical interest lie in the range 10” <8 <10-l; no 
bounds can be imposed upon 6 . ) Here different situations can arise depending upon the 
values of 6 and 6 . We consider some typical cases as examples. 

@, Let e = 2 ~i0-~, 6 = 16-r. Then 6 i=. e&-i = 2 -10-s and it follows that one should 
use the equations for the case fim e&l = 0 for e, d-_, 0. Because es-‘& .= 64. 10-4, 
and (e&l)s = 4.10+, we may in Eqs.(4,3),(4,5) to (4.7) and (4.10) to (4.13) omit 
containing factors e&‘/I and (e&1)s, as being of the order of c . 

Because Eqs. (4.3) and (4.5) to (4.7) contain the same terms as the corresponding Eqs. 
(4.10) to (4.13) in the given specific case, it is appropriate to use the system of Eqs. 
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(4.3) and (4.5) to (4.7) up to iV= 0, and solve them by finite-difference methods, taking 

the steps in fl three times smaller for fl< 0.5 than for N ~‘0.5 (approximately). Correc- 
tion of the pressure change in its dependence upon N can be introduced in an iterative 
way. If terms 0( ~6-3) are retained in the equations. it is appropriate to use Eqs.(4.3) 

and (4.5) to (4.7) as before for all values of fl, but these equations must be supplemented 

by terms that are small for #= o(1) but not small for q = o(1) ; for example, in the 

right-hand side of Ee(4.7) one must retain a term IeKp (a-TN - 2~~). corresponding 

to the term ~6~ * ’ Kp (rlT, - 2uu,) in Eq.(4.13), that is, construct a hybrid equation, etc. 

10. Let e = 2.10-s, 6 =: 10-a. Then !A = e6 -1 = 2 .lO-l. and it follows that one should 

use the equations for the cases limed-l =I 0 for c , 6 --) 0. Because ~6~“’ = 2 *10e3, and 

(&a-l)a = 4AO-2, it is necessary to retain all terms written out in the equations. Since 

c and 6 are rather small, it would seem natural to seek the solution of the problem in 
the form : 

for N = 0 (i) 

f (S, N, e, 6) = F, (S, N, 46) f 6’1%/s (S, N, e/6) + 

-I- 6F, (S, N, e/6) +- 0 (@) + 0 (~%5-~) (10.1) 

for n = 0 (i) 

f (S, 11. 8, 6) = fa (S, rl) + e&+ f, (S, rl) + 0 (e2W (10.2) 

Heref=p, p, yT, U. U*or U”. But to attain a uniformly accurate solution it would 

be necessary to take three terms in Eq, (10.1) and two in Eq, (10.2) (since e = 2 *lG-‘, 
6”’ = iOm3, eS-‘ia = 2 *10-2), the determination of,which represents a difficult problem. 

For this reason it is simpler to use the equations in the s, fl variables, in which in addi- 
tion are included terms that are small for N = o( 1) but not small for q = o( 1) , as was 

done in the previous example, and solve these equations by finite-difference methods 

for hrz 0 , 5’ > S, (where So is a value of order -1). In so doing it is necessary to con- 

sider that the step in fl should be taken smaller by a factor J6 = 10 (approximately) for 
N c 0.5 than for N > 0.5 . If one considers two terms in the expansion (10.1) and one 

in (10.2), the error in the solution will be o( 6) (that is, an order larger than in the 
boundary layer ahead of point 0) . 

11. Let e = 2 *iO-2, 6 = iO-2. Then B = e6-l = 2, and it follows that one should use 
the equations for the case limed-1 = 6, for e.6 -‘O. .For N = 0( 1) the gas motion is 

described by the Euler Eqs.(S. 1) to an accuracy of 1 + O( c ) , and for TJ = O( 1) by the 

boundary-layer equations (5.2) with the same accuracy. The solution of the problem 
with uniform accuracy has the form 

f (S, rl, E) = f. (S, rl) t- (BE) ‘!2f1 (S, 11) + 0 (e) for rl = 0 (1) (11.1) 

f (S, N, e) = F, (S’, iv) + @E)“~ F, (S, N) -fi 0 (E) for N = 0 (1) (11.2) 

where f = p, p. ‘I’, II, v* or ; = v”. The appearance of terms 0( Ef) in (11.2) is con- 

nected with the effect of the “displacement thickness” of the boundary layer, in which 

U = (Be)‘,‘*uO = (BE)‘.!’ [L$)O (S, n) + (Be)‘;’ VI0 (S, n) f 0 (E)l 

For large r) (r) -% ) 
ulJO (S, rl) = n, (S) n + A, (S) $- 0 (1) 

Here Al (3) and A,(S) are functions of S ; A,(S) determines the “displacement 

thickness” of the boundary layer. The problem of finding the first two terms in the 
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expansions (11.1) and (11.2) resembles the problem of finding the second approximation 
in boundary-layer theory, the soWion of which was given by M. Van Dyke in [2], but here 
the parameter with which the expansions are formed is (PC ) 4 and not 6 . For this reason 

we devote our main attention to the differences occurring in this problem. It is not oleer 

whether the regions where the asymptotic expansions (3.2) and (11.2) are valid will 

overlap. It therefore evidently follows that Eqs, (3.3) should be used up to some value 

s = s, (of order -l), and then for s> so one should change to a hybrid system of equa- 

tions containing all terms of Eqs,(3.3) as well as all terms of Eqs.(5.1) and (5.2). After 

transition through the speed of sound outside a layer 0 (e3jP) at S= So* we may use the 

systems (5.1) and (5.2) separately (another approach to the solution of these equations 

is given in [2] ). For s > so * the problem is solved analogously to the problem of the 

second approximation in [I]. 

12, Let C = 10d, 6 = lOa. Since /3 = C6’l = 1, it follows that one should use the 

equations for the case lim C6”1 = &, for 8 , 6 -+O and the method of solution considered 

in the previous example. However, there is the possibility here of taking one term in the 
expansions (11.1) and (11,2), As a result, the error in the solution of the problem will 
be o( c 4) rather than 0 (t: f, that is, hundredths and not tho~andths, which may, however, 

be sufficient for t rough calculation. We note that the error in the solution for s> 1 

will also be O(C 2, . 

13, Let e = 3 .i9-2, 6 = 19-3. Since ET-~= 0.9, the problem cannot be solved by 

the methods of boundary-layer theory. 

14, After determination of the solution of the problem in the vicinity of point 0, for 

s > $1, where & is a quantity of order 1, one should change to the system of Eqs. (3.3). 
As a result, the solution of the problem of the plane laminar boundary layer will be 
obtained with uniform accuracy by a factor 1 + c?( 8 ), provided that the fiow does not 

separate in the vicinity of point 0. 
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